One Polynomial Mean Inequality.
Problem with a solution proposed by Arkady Alt , San Jose , California, USA.
Prove that for any real positive x and any natural » > 2 holds inequality
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Solution.

First note that since /M = x»‘/ L+ 1x+..+(1hx)" then
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and we can assume 0 < x < 1.
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Let S, == 1+x+...+x".Then‘n/ S > ‘I/M = (LY_I > (h)" PN
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For n = 2 inequality (1) becomes 225, > 357 < 4(1 +x+x2) > 3(1 +x)? = (x—1)* > 0.
Denoting a, == S"'n",b, :== §" ;(n+1)"", n > 2 we will prove auxiliary
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where latter inequality obviously holds because 0 < x <1 = x* > x",k=1,2,...,n— 1.

For any natural n > 2 since <2+L > %,n e N then assuming a, > b, we obtain
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Thus, by Math Induction for any » > 2 holds inequality a, > b, <(1).



